Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Epigenomics ; 9(12): 1503-1527, 2017 12.
Article in English | MEDLINE | ID: mdl-29130343

ABSTRACT

AIM: Characterization of the hepatic epigenome following exposure to chemicals and therapeutic drugs provides novel insights into toxicological and pharmacological mechanisms, however appreciation of genome-wide inter- and intra-strain baseline epigenetic variation, particularly in under-characterized species such as the rat is limited. Material & methods: To enhance the utility of epigenomic endpoints safety assessment, we map both DNA modifications (5-methyl-cytosine and 5-hydroxymethyl-cytosine) and enhancer related chromatin marks (H3K4me1 and H3K27ac) across multiple male and female rat livers for two important outbred laboratory rat strains (Sprague-Dawley and Wistar). Results & conclusion: Integration of DNA modification, enhancer chromatin marks and gene expression profiles reveals clear gender-specific chromatin states at genes which exhibit gender-specific transcription. Taken together this work provides a valuable baseline liver epigenome resource for rat strains that are commonly used in chemical and pharmaceutical safety assessment.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Genetic Variation , Histone Code , Liver/metabolism , Animals , Chromatin/metabolism , CpG Islands , Databases, Genetic , Female , Male , Rats , Rats, Sprague-Dawley , Rats, Wistar , Sex Factors
2.
Toxicol Sci ; 158(2): 367-378, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28541575

ABSTRACT

Derisking xenobiotic-induced nongenotoxic carcinogenesis (NGC) represents a significant challenge during the safety assessment of chemicals and therapeutic drugs. The identification of robust mechanism-based NGC biomarkers has the potential to enhance cancer hazard identification. We previously demonstrated Constitutive Androstane Receptor (CAR) and WNT signaling-dependent up-regulation of the pluripotency associated Dlk1-Dio3 imprinted gene cluster noncoding RNAs (ncRNAs) in the liver of mice treated with tumor-promoting doses of phenobarbital (PB). Here, we have compared phenotypic, transcriptional ,and proteomic data from wild-type, CAR/PXR double knock-out and CAR/PXR double humanized mice treated with either PB or chlordane, and show that hepatic Dlk1-Dio3 locus long ncRNAs are upregulated in a CAR/PXR-dependent manner by two structurally distinct CAR activators. We further explored the specificity of Dlk1-Dio3 locus ncRNAs as hepatic NGC biomarkers in mice treated with additional compounds working through distinct NGC modes of action. We propose that up-regulation of Dlk1-Dio3 cluster ncRNAs can serve as an early biomarker for CAR activator-induced nongenotoxic hepatocarcinogenesis and thus may contribute to mechanism-based assessments of carcinogenicity risk for chemicals and novel therapeutics.


Subject(s)
Gene Expression/drug effects , Intercellular Signaling Peptides and Proteins/genetics , Iodide Peroxidase/genetics , Liver/drug effects , RNA, Long Noncoding/genetics , Receptors, Cytoplasmic and Nuclear/agonists , Xenobiotics/toxicity , Animals , Biomarkers/metabolism , Calcium-Binding Proteins , Chlordan/toxicity , Constitutive Androstane Receptor , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Knockout , Phenobarbital/toxicity , Up-Regulation/drug effects
3.
Toxicol Pathol ; 45(1): 114-118, 2017 01.
Article in English | MEDLINE | ID: mdl-27708198

ABSTRACT

The overarching theme of the 2016 Society of Toxicology Pathology's Annual Symposium was "The Basis and Relevance of Variation in Toxicologic Responses." Session 4 focused on genetic variation as a potential source for variability in toxicologic responses within nonclinical toxicity studies and further explored how knowledge of genetic traits might enable targeted prospective and retrospective studies in drug development and human health risk assessment. In this session, the influence of both genetic sequence variation and epigenetic modifications on toxicologic responses and their implications for understanding risk were explored. In this overview, the presentations in this session will be summarized, with a goal of exploring the ramifications of genetic and epigenetic variability within and across species for toxicity studies and disseminating information regarding novel tools to harness this variability to advance understanding of toxicologic responses across populations.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Epigenesis, Genetic , Genetic Variation , Hypersensitivity , Pathology/methods , Toxicology/methods , Animals , Congresses as Topic , Drug-Related Side Effects and Adverse Reactions/genetics , Drug-Related Side Effects and Adverse Reactions/immunology , Hypersensitivity/genetics , Hypersensitivity/immunology , Species Specificity
4.
Cancer Res ; 76(10): 3097-108, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27197233

ABSTRACT

Aberrant hypermethylation of CpG islands (CGI) in human tumors occurs predominantly at repressed genes in the host tissue, but the preceding events driving this phenomenon are poorly understood. In this study, we temporally tracked epigenetic and transcriptomic perturbations that occur in a mouse model of liver carcinogenesis. Hypermethylated CGI events in the model were predicted by enrichment of the DNA modification 5-hydroxymethylcytosine (5hmC) and the histone H3 modification H3K27me3 at silenced promoters in the host tissue. During cancer progression, selected CGIs underwent hypo-hydroxymethylation prior to hypermethylation, while retaining H3K27me3. In livers from mice deficient in Tet1, a tumor suppressor involved in cytosine demethylation, we observed a similar loss of promoter core 5hmC, suggesting that reduced Tet1 activity at CGI may contribute to epigenetic dysregulation during hepatocarcinogenesis. Consistent with this possibility, mouse liver tumors exhibited reduced Tet1 protein levels. Similar to humans, DNA methylation changes at CGI in mice did not appear to be direct drivers of hepatocellular carcinoma progression, rather, dynamic changes in H3K27me3 promoter deposition correlated strongly with tumor-specific activation and repression of transcription. Overall, our results suggest that loss of promoter-associated 5hmC in liver tumors licenses reprograming of DNA methylation at silent CGI during progression. Cancer Res; 76(10); 3097-108. ©2016 AACR.


Subject(s)
5-Methylcytosine/analogs & derivatives , CpG Islands/genetics , DNA Methylation/drug effects , DNA-Binding Proteins/genetics , Liver Neoplasms, Experimental/genetics , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/genetics , 5-Methylcytosine/toxicity , Animals , Carcinoma, Hepatocellular , Cell Differentiation , Histones/metabolism , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/pathology , Mice , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
5.
Toxicology ; 340: 17-26, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26732893

ABSTRACT

Epigenetic regulation of gene expression plays a pivotal role in the orchestration of immune responses. Chemical allergens form two categories: skin sensitizing chemicals associated with allergic contact dermatitis, and chemicals that cause sensitization of the respiratory tract and occupational asthma. In mice these are characterized by different T helper (Th) cell responses. Changes in DNA methylation in particular have been implicated in the in vivo responses to chemical allergy. As such it was hypothesised that differentially methylated regions (DMR) may provide candidates biomarkers of chemical allergy To examine this, mice were exposed to 2,4-dinitrochlorobenzene (DNCB; a contact allergen) or trimellitic anhydride (TMA; a respiratory allergen). DNA from draining lymph nodes was processed for methylated (5mC) and hydroxymethylated (5hmC) DNA immunoprecipitation (MeDIP/hMeDIP) then selected DMR analysed by qPCR. We describe a number of DMRs which, by combined analysis of 5mC and 5hmC, differentiate between responses induced by DNCB and those by TMA. Furthermore, these changes in methylation are specific to the draining lymph node. The Gmpr DMR is suggested as a possible biomarker for contact allergen-induced immune responses; it is characterised by divergent levels of 5mC and 5hmC DNCB-treated mice only. In contrast, the Nwc DMR was characterised by divergent 5mC and 5hmC specifically in response to TMA, highlighting its possible utility as a biomarker for responses induced by chemical respiratory allergens. These data not only represent novel analysis of 5hmC in response to chemical allergy in vivo, but with further investigation, may also provide a possible basis for differentiation between classes of chemical allergens.


Subject(s)
5-Methylcytosine/metabolism , Allergens/toxicity , Cytosine/analogs & derivatives , DNA Methylation/drug effects , Dinitrochlorobenzene/toxicity , Epigenesis, Genetic/drug effects , Lymph Nodes/drug effects , Phthalic Anhydrides/toxicity , Animals , Cytosine/metabolism , DNA Fragmentation , Female , Immunoprecipitation , Local Lymph Node Assay , Lymph Nodes/immunology , Lymph Nodes/metabolism , Lymph Nodes/pathology , Mice, Inbred BALB C , Polymerase Chain Reaction , Promoter Regions, Genetic/drug effects
6.
Trends Cancer ; 2(8): 398-408, 2016 08.
Article in English | MEDLINE | ID: mdl-28741493

ABSTRACT

Assessing the carcinogenic potential of innovative drugs spanning diverse therapeutic modalities and target biology represents a major challenge during drug development. Novel modalities, such as cell and gene therapies that involve intrinsic genetic modification of the host genome, require distinct approaches for identification of cancer hazard. We emphasize the need for customized weight-of-evidence cancer risk assessments based on mode of action that balance multiple options for preclinical identification of cancer hazard with appropriate labeling of clinical products and risk management plans. We review how advances in molecular carcinogenesis can enhance mechanistic interpretation and preclinical indicators of neoplasia, and recommend that drug targets be systematically assessed for potential association with tumorigenic phenotypes via genetic models and cancer genome resources.


Subject(s)
Carcinogenesis/chemically induced , Drug Evaluation, Preclinical , Neoplasms/chemically induced , Animals , Carcinogens , Drug-Related Side Effects and Adverse Reactions , Humans , Risk Assessment
7.
Toxicology ; 335: 11-9, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26134581

ABSTRACT

Recent technological advances have led to rapid progress in the characterization of epigenetic modifications that control gene expression in a generally heritable way, and are likely involved in defining cellular phenotypes, developmental stages and disease status from one generation to the next. On November 18, 2013, the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) held a symposium entitled "Advances in Assessing Adverse Epigenetic Effects of Drugs and Chemicals" in Washington, D.C. The goal of the symposium was to identify gaps in knowledge and highlight promising areas of progress that represent opportunities to utilize epigenomic profiling for risk assessment of drugs and chemicals. Epigenomic profiling has the potential to provide mechanistic information in toxicological safety assessments; this is especially relevant for the evaluation of carcinogenic or teratogenic potential and also for drugs that directly target epigenetic modifiers, like DNA methyltransferases or histone modifying enzymes. Furthermore, it can serve as an endpoint or marker for hazard characterization in chemical safety assessment. The assessment of epigenetic effects may also be approached with new model systems that could directly assess transgenerational effects or potentially sensitive stem cell populations. These would enhance the range of safety assessment tools for evaluating xenobiotics that perturb the epigenome. Here we provide a brief synopsis of the symposium, update findings since that time and then highlight potential directions for future collaborative efforts to incorporate epigenetic profiling into risk assessment.


Subject(s)
Epigenesis, Genetic/drug effects , Gene Expression Profiling/standards , Toxicity Tests/standards , Animals , Cellular Reprogramming/drug effects , DNA Methylation/drug effects , Dose-Response Relationship, Drug , Endpoint Determination , Environmental Monitoring/standards , Gene Expression Regulation, Developmental/drug effects , Genetic Markers , Humans , Risk Assessment , Stem Cells/drug effects , Stem Cells/pathology
8.
Toxicol Sci ; 139(2): 501-11, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24690595

ABSTRACT

The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcinogenesis. Here, we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CAR(KO)-PXR(KO)), double humanized CAR and PXR (CAR(h)-PXR(h)), and wild-type C57BL/6 mice. Wild-type and CAR(h)-PXR(h) mouse livers exhibited temporally and quantitatively similar transcriptional responses during 91 days of PB exposure including the sustained induction of the xenobiotic response gene Cyp2b10, the Wnt signaling inhibitor Wisp1, and noncoding RNA biomarkers from the Dlk1-Dio3 locus. Transient induction of DNA replication (Hells, Mcm6, and Esco2) and mitotic genes (Ccnb2, Cdc20, and Cdk1) and the proliferation-related nuclear antigen Mki67 were observed with peak expression occurring between 1 and 7 days PB exposure. All these transcriptional responses were absent in CAR(KO)-PXR(KO) mouse livers and largely reversible in wild-type and CAR(h)-PXR(h) mouse livers following 91 days of PB exposure and a subsequent 4-week recovery period. Furthermore, PB-mediated upregulation of the noncoding RNA Meg3, which has recently been associated with cellular pluripotency, exhibited a similar dose response and perivenous hepatocyte-specific localization in both wild-type and CAR(h)-PXR(h) mice. Thus, mouse livers coexpressing human CAR and PXR support both the xenobiotic metabolizing and the proliferative transcriptional responses following exposure to PB.


Subject(s)
Cell Cycle/drug effects , Liver/drug effects , Phenobarbital/toxicity , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Steroid/genetics , Transcriptome/drug effects , Animals , Cell Cycle/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Constitutive Androstane Receptor , Gene Expression Profiling , Humans , Liver/enzymology , Liver/metabolism , Liver/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Phenobarbital/pharmacokinetics , Pregnane X Receptor , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Steroid/metabolism , Species Specificity , Xenobiotics/pharmacokinetics , Xenobiotics/toxicity
9.
Zebrafish ; 11(3): 219-26, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24625211

ABSTRACT

Paracetamol is the commonest cause of acute liver failure in the Western world and biomarkers are needed that report early hepatotoxicity. The liver-enriched microRNA (miRNA), miR-122, is a promising biomarker currently being qualified in humans. For biomarker development and drug toxicity screening, the zebrafish has advantages over rodents; however, blood acquisition in this model remains technically challenging. We developed a method for collecting blood from the adult zebrafish by retro-orbital (RO) bleeding and compared it to the commonly used lateral incision method. The RO technique was more reliable in terms of the blood yield and minimum amount per fish. This new RO technique was used in a zebrafish model of paracetamol toxicity. Paracetamol induced dose-dependent increases in liver cell necrosis, serum alanine transaminase activity, and mortality. In situ hybridization localized expression of miR-122 to the cytoplasm of zebrafish hepatocytes. After collection by RO bleeding, serum miR-122 could be measured and this miRNA was substantially increased by paracetamol 24 h after exposure, an increase that was prevented by delayed (3 h poststart of paracetamol exposure) treatment with acetylcysteine. In summary, collection of blood by RO bleeding facilitated measurement of miR-122 in a zebrafish model of paracetamol hepatotoxicity. The zebrafish represents a new species for measurement of circulating miRNA biomarkers that are translational and can bridge between fish and humans.


Subject(s)
Blood Specimen Collection/veterinary , MicroRNAs/genetics , Zebrafish/genetics , Acetaminophen/toxicity , Animals , Hepatocytes/drug effects , Liver/drug effects , MicroRNAs/metabolism , Zebrafish/metabolism
10.
Article in English | MEDLINE | ID: mdl-24001620

ABSTRACT

With the advent of high resolution sequencing technologies there has been increasing interest in the study of genome-wide epigenetic modification patterns that govern the underlying gene expression events of a particular cell or tissue type. There is now mounting evidence that perturbations to the epigenetic landscape occur during a host of cellular processes including normal proliferation/differentiation and aberrant outcomes such as carcinogenesis. Furthermore, epigenetic perturbations have been associated with exposure to a range of drugs and toxicants, including non-genotoxic carcinogens (NGCs). Although a variety of epigenetic modifications induced by NGCs have been studied previously, recent genome-wide integrated epigenomic and transcriptomic studies reveal for the first time the extent and dynamic nature of the epigenetic perturbations resulting from xenobiotic exposure. The interrogation and integration of one such epigenetic mark, the newly discovered 5-hydroxymethylcytosine (5hmC) modification, reveals that drug treatment associated perturbations of the epigenome can result in unique epigenetic signatures. This review focuses on how recent advances in the field of epigenetics can enhance our mechanistic understanding of xenobiotic exposure and provide novel safety biomarkers.


Subject(s)
Cytosine/analogs & derivatives , DNA Methylation , Epigenesis, Genetic , Genetic Markers , Xenobiotics/toxicity , 5-Methylcytosine/analogs & derivatives , Animals , Carcinogens/toxicity , Chemical Safety , Chromatin/metabolism , Cytosine/metabolism , Disease Progression , Epigenomics , Genome , Humans , Transcriptome
11.
Nucleic Acids Res ; 41(22): e206, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24214958

ABSTRACT

The epigenetic modification of 5-hydroxymethylcytosine (5hmC) is receiving great attention due to its potential role in DNA methylation reprogramming and as a cell state identifier. Given this interest, it is important to identify reliable and cost-effective methods for the enrichment of 5hmC marked DNA for downstream analysis. We tested three commonly used affinity-based enrichment techniques; (i) antibody, (ii) chemical capture and (iii) protein affinity enrichment and assessed their ability to accurately and reproducibly report 5hmC profiles in mouse tissues containing high (brain) and lower (liver) levels of 5hmC. The protein-affinity technique is a poor reporter of 5hmC profiles, delivering 5hmC patterns that are incompatible with other methods. Both antibody and chemical capture-based techniques generate highly similar genome-wide patterns for 5hmC, which are independently validated by standard quantitative PCR (qPCR) and glucosyl-sensitive restriction enzyme digestion (gRES-qPCR). Both antibody and chemical capture generated profiles reproducibly link to unique chromatin modification profiles associated with 5hmC. However, there appears to be a slight bias of the antibody to bind to regions of DNA rich in simple repeats. Ultimately, the increased specificity observed with chemical capture-based approaches makes this an attractive method for the analysis of locus-specific or genome-wide patterns of 5hmC.


Subject(s)
Cytosine/analogs & derivatives , DNA/chemistry , 5-Methylcytosine/analogs & derivatives , Animals , Antibodies , Chromatin/metabolism , CpG Islands , Cytosine/analysis , Cytosine/immunology , DNA-Binding Proteins/analysis , Genetic Loci , Genomic Imprinting , Immunoassay/methods , Liver/chemistry , Male , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Tandem Repeat Sequences
12.
Nucleic Acids Res ; 41(11): 5639-54, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23598998

ABSTRACT

Aberrant DNA methylation is a common feature of neoplastic lesions, and early detection of such changes may provide powerful mechanistic insights and biomarkers for carcinogenesis. Here, we investigate dynamic changes in the mouse liver DNA methylome associated with short (1 day) and prolonged (7, 28 and 91 days) exposure to the rodent liver non-genotoxic carcinogen, phenobarbital (PB). We find that the distribution of 5mC/5hmC is highly consistent between untreated individuals of a similar age; yet, changes during liver maturation in a transcriptionally dependent manner. Following drug treatment, we identify and validate a series of differentially methylated or hydroxymethylated regions: exposure results in staged transcriptional responses with distinct kinetic profiles that strongly correlate with promoter proximal region 5hmC levels. Furthermore, reciprocal changes for both 5mC and 5hmC in response to PB suggest that active demethylation may be taking place at each set of these loci via a 5hmC intermediate. Finally, we identify potential early biomarkers for non-genotoxic carcinogenesis, including several genes aberrantly expressed in liver cancer. Our work suggests that 5hmC profiling can be used as an indicator of cell states during organ maturation and drug-induced responses and provides novel epigenetic signatures for non-genotoxic carcinogen exposure.


Subject(s)
Cytosine/analogs & derivatives , DNA Methylation , Epigenesis, Genetic , Liver/metabolism , 5-Methylcytosine/metabolism , Animals , Carcinogens/toxicity , Cell Transformation, Neoplastic , Cytochrome P-450 Enzyme System/genetics , Cytosine/metabolism , Epigenesis, Genetic/drug effects , Genetic Markers , Liver/drug effects , Liver/growth & development , Male , Mice , Oligonucleotide Array Sequence Analysis , Phenobarbital/toxicity , Promoter Regions, Genetic , Transcriptome/drug effects
13.
Hepatology ; 58(2): 777-87, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23390034

ABSTRACT

UNLABELLED: Acetaminophen overdose is a common reason for hospital admission and the most frequent cause of hepatotoxicity in the Western world. Early identification would facilitate patient-individualized treatment strategies. We investigated the potential of a panel of novel biomarkers (with enhanced liver expression or linked to the mechanisms of toxicity) to identify patients with acetaminophen-induced acute liver injury (ALI) at first presentation to the hospital when currently used markers are within the normal range. In the first hospital presentation plasma sample from patients (n = 129), we measured microRNA-122 (miR-122; high liver specificity), high mobility group box-1 (HMGB1; marker of necrosis), full-length and caspase-cleaved keratin-18 (K18; markers of necrosis and apoptosis), and glutamate dehydrogenase (GLDH; marker of mitochondrial dysfunction). Receiver operator characteristic curve analysis and positive/negative predictive values were used to compare sensitivity to report liver injury versus alanine transaminase (ALT) and International Normalized Ratio (INR). In all patients, biomarkers at first presentation significantly correlated with peak ALT or INR. In patients presenting with normal ALT or INR, miR-122, HMGB1, and necrosis K18 identified the development of liver injury (n = 15) or not (n = 84) with a high degree of accuracy and significantly outperformed ALT, INR, and plasma acetaminophen concentration for the prediction of subsequent ALI (n = 11) compared with no ALI (n = 52) in patients presenting within 8 hours of overdose. CONCLUSION: Elevations in plasma miR-122, HMGB1, and necrosis K18 identified subsequent ALI development in patients on admission to the hospital, soon after acetaminophen overdose, and in patients with ALTs in the normal range. The application of such a biomarker panel could improve the speed of clinical decision-making, both in the treatment of ALI and the design/execution of patient-individualized treatment strategies.


Subject(s)
Acetaminophen/adverse effects , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/diagnosis , HMGB1 Protein/blood , Hospitalization , Keratin-18/blood , MicroRNAs/blood , Adult , Alanine Transaminase/metabolism , Biomarkers/blood , Disease Management , Female , Glutamate Dehydrogenase/metabolism , Humans , Liver/metabolism , Male , Middle Aged , Sensitivity and Specificity , Time Factors
14.
PLoS One ; 8(1): e52442, 2013.
Article in English | MEDLINE | ID: mdl-23300973

ABSTRACT

MicroRNAs are short non-coding RNAs that regulate gene expression at the post-transcriptional level and play key roles in heart development and cardiovascular diseases. Here, we have characterized the expression and distribution of microRNAs across eight cardiac structures (left and right ventricles, apex, papillary muscle, septum, left and right atrium and valves) in rat, Beagle dog and cynomolgus monkey using microRNA sequencing. Conserved microRNA signatures enriched in specific heart structures across these species were identified for cardiac valve (miR-let-7c, miR-125b, miR-127, miR-199a-3p, miR-204, miR-320, miR-99b, miR-328 and miR-744) and myocardium (miR-1, miR-133b, miR-133a, miR-208b, miR-30e, miR-499-5p, miR-30e*). The relative abundance of myocardium-enriched (miR-1) and valve-enriched (miR-125b-5p and miR-204) microRNAs was confirmed using in situ hybridization. MicroRNA-mRNA interactions potentially relevant for cardiac functions were explored using anti-correlation expression analysis and microRNA target prediction algorithms. Interactions between miR-1/Timp3, miR-125b/Rbm24, miR-204/Tgfbr2 and miR-208b/Csnk2a2 were identified and experimentally investigated in human pulmonary smooth muscle cells and luciferase reporter assays. In conclusion, we have generated a high-resolution heart structure-specific mRNA/microRNA expression atlas for three mammalian species that provides a novel resource for investigating novel microRNA regulatory circuits involved in cardiac molecular physiopathology.


Subject(s)
Gene Expression Regulation , Heart/physiology , MicroRNAs/metabolism , RNA, Messenger/metabolism , Transcriptome , Animals , Cell Line , Chromosome Mapping/methods , Dogs , Female , Heart Valves/metabolism , Humans , In Situ Hybridization , Macaca fascicularis , Male , Myocardium/pathology , RNA Processing, Post-Transcriptional , Rats , Rats, Wistar , Species Specificity
15.
Toxicol Sci ; 131(2): 375-86, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23091169

ABSTRACT

The molecular events during nongenotoxic carcinogenesis and their temporal order are poorly understood but thought to include long-lasting perturbations of gene expression. Here, we have investigated the temporal sequence of molecular and pathological perturbations at early stages of phenobarbital (PB) mediated liver tumor promotion in vivo. Molecular profiling (mRNA, microRNA [miRNA], DNA methylation, and proteins) of mouse liver during 13 weeks of PB treatment revealed progressive increases in hepatic expression of long noncoding RNAs and miRNAs originating from the Dlk1-Dio3 imprinted gene cluster, a locus that has recently been associated with stem cell pluripotency in mice and various neoplasms in humans. PB induction of the Dlk1-Dio3 cluster noncoding RNA (ncRNA) Meg3 was localized to glutamine synthetase-positive hypertrophic perivenous hepatocytes, suggesting a role for ß-catenin signaling in the dysregulation of Dlk1-Dio3 ncRNAs. The carcinogenic relevance of Dlk1-Dio3 locus ncRNA induction was further supported by in vivo genetic dependence on constitutive androstane receptor and ß-catenin pathways. Our data identify Dlk1-Dio3 ncRNAs as novel candidate early biomarkers for mouse liver tumor promotion and provide new opportunities for assessing the carcinogenic potential of novel compounds.


Subject(s)
Biomarkers, Tumor/genetics , Genomic Imprinting , Intercellular Signaling Peptides and Proteins/genetics , Iodide Peroxidase/genetics , Liver Neoplasms, Experimental/genetics , Multigene Family , RNA, Untranslated/genetics , Animals , Calcium-Binding Proteins , Constitutive Androstane Receptor , Female , Male , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Polymerase Chain Reaction , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction , Transcriptome , beta Catenin/metabolism
16.
Genome Biol ; 13(10): R93, 2012 Oct 03.
Article in English | MEDLINE | ID: mdl-23034186

ABSTRACT

BACKGROUND: Induction and promotion of liver cancer by exposure to non-genotoxic carcinogens coincides with epigenetic perturbations, including specific changes in DNA methylation. Here we investigate the genome-wide dynamics of 5-hydroxymethylcytosine (5hmC) as a likely intermediate of 5-methylcytosine (5mC) demethylation in a DNA methylation reprogramming pathway. We use a rodent model of non-genotoxic carcinogen exposure using the drug phenobarbital. RESULTS: Exposure to phenobarbital results in dynamic and reciprocal changes to the 5mC/5hmC patterns over the promoter regions of a cohort of genes that are transcriptionally upregulated. This reprogramming of 5mC/5hmC coincides with characteristic changes in the histone marks H3K4me2, H3K27me3 and H3K36me3. Quantitative analysis of phenobarbital-induced genes that are involved in xenobiotic metabolism reveals that both DNA modifications are lost at the transcription start site, while there is a reciprocal relationship between increasing levels of 5hmC and loss of 5mC at regions immediately adjacent to core promoters. CONCLUSIONS: Collectively, these experiments support the hypothesis that 5hmC is a potential intermediate in a demethylation pathway and reveal precise perturbations of the mouse liver DNA methylome and hydroxymethylome upon exposure to a rodent hepatocarcinogen.


Subject(s)
Cytosine/analogs & derivatives , DNA Methylation/drug effects , Liver/metabolism , Phenobarbital/pharmacology , 5-Methylcytosine/analogs & derivatives , Animals , Cytosine/metabolism , Epigenomics , Gene Expression Profiling , Gene Expression Regulation/drug effects , Histones/metabolism , Male , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic/drug effects
17.
Toxicol Sci ; 130(1): 60-9, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22705809

ABSTRACT

There is increasing evidence that epigenetic regulation of gene expression plays a pivotal role in the orchestration of immune and allergic responses. Such regulatory mechanisms have potentially important implications for the acquisition of sensitization to chemical and drug allergens; and in determining the vigor, characteristics, and longevity of allergic responses. Importantly, the discovery of long-lasting epigenetic alterations in specific immunoregulatory genes provides a mechanistic basis for immune cell memory, and thereby the potential of chemical allergens to influence the subsequent orientation of the adaptive immune system. In this article, we consider the implications of epigenetic mechanisms for the development of sensitization to chemical and drug allergens and the form that allergic reactions will take.


Subject(s)
Allergens/immunology , Drug Hypersensitivity/immunology , Epigenesis, Genetic , Gene Expression/immunology , Immune System/immunology , Xenobiotics/immunology , Allergens/toxicity , Drug Hypersensitivity/etiology , Gene Expression/drug effects , Humans , Immune System/drug effects , Immunization , Xenobiotics/toxicity
18.
Toxicol Sci ; 99(1): 315-25, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17557908

ABSTRACT

Cyproconazole, a triazole fungicide, causes hepatocellular adenomas and carcinomas in CD-1 mice at dose levels of 100 and 200 ppm. The constitutive androstane receptor (CAR) has been shown to play a significant role in the overall mode of action for several nongenotoxic rodent carcinogens such as phenobarbital. The liver effects of dietary cyproconazole or phenobarbital were investigated after 2, 7, or 14 days in male CD-1, C57BL/6J, and C3H/HeNClrBR mice. Cyproconazole produced similar, dose-responsive effects in all three strains of mice, and the response was similar to that of phenobarbital. Subsequently, Car-null and wild-type male mice on a C3H/HeNClrBR background were administered 200 or 450 ppm cyproconazole, or 850 ppm phenobarbital for up to 7 days. In wild-type mice, 200 ppm cyproconazole caused liver hypertrophy, increased liver weight and cell proliferation, single-cell necrosis and fat vacuolation, effects generally similar to those caused by 850 ppm phenobarbital. Plasma cholesterol was decreased by both compounds, but cyproconazole had a greater effect. The higher dose (450 ppm) of cyproconazole caused similar changes, but greater evidence of liver damage was observed, including a large increase in plasma transaminases. Induction of CAR target genes Cyp2b10 and Gadd45beta was observed with both compounds, whereas the cell cycle regulatory gene Mdm2 was unaffected. In Car-null mice, the effects noted with either cyproconazole or phenobarbital were absent or greatly diminished. These experiments demonstrate that short-term liver effects of cyproconazole in mice are CAR-dependent and similar to those of phenobarbital, a known nongenotoxic rodent liver carcinogen.


Subject(s)
Fungicides, Industrial/toxicity , Liver/drug effects , Receptors, Androgen/metabolism , Triazoles/toxicity , Administration, Oral , Animals , Antigens, Differentiation/biosynthesis , Antigens, Differentiation/genetics , Aryl Hydrocarbon Hydroxylases/biosynthesis , Aryl Hydrocarbon Hydroxylases/genetics , Cell Proliferation/drug effects , Cytochrome P450 Family 2 , Diet , Dose-Response Relationship, Drug , Enzyme Induction/drug effects , Fatty Liver/chemically induced , Fatty Liver/pathology , Gene Expression Regulation , Gene Silencing , Hepatocytes/drug effects , Hepatocytes/pathology , Hypertrophy , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Organ Size/drug effects , Phenobarbital/pharmacology , Proto-Oncogene Proteins c-mdm2/biosynthesis , Proto-Oncogene Proteins c-mdm2/genetics , Receptors, Androgen/genetics , Species Specificity , Steroid Hydroxylases/biosynthesis , Steroid Hydroxylases/genetics , Vacuoles/drug effects
19.
Toxicology ; 225(2-3): 157-72, 2006 Aug 15.
Article in English | MEDLINE | ID: mdl-16854511

ABSTRACT

We have used global gene expression profiling, combined with pathway analysis tools, to identify in rats the molecular events associated with paraquat toxicity in the lung. Early (2, 8 and 18h) gene expression changes induced following intraperitoneal (i.p.) exposure to paraquat were measured in the caudal lobe of lungs using Affymetrix rat genome GeneChips (31,042 probe sets). A single high dose of paraquat dichloride (20mg/kg) was used that has been shown previously to cause in rats extensive lung fibrosis after 10 days. Hierarchical clustering of 543 paraquat-responsive genes (false discovery rate<0.05) revealed that under these conditions of exposure paraquat induces a staged transcriptional response in the rat lung that precedes the appearance of lung damage. We report here that many of the transcriptional responses to paraquat were rapid (being maximal at 2h post-dose), and that the predominant molecular functions and biological processes associated with these genes include membrane transport, oxidative stress, lung development, epithelial cell differentiation and transforming growth factor beta (TGF-beta) signalling. These data provide novel insights into the molecular pathways that lead to toxicity after exposure of the rat lung to paraquat.


Subject(s)
Gene Expression Profiling , Gene Expression/drug effects , Herbicides/pharmacology , Lung/drug effects , Lung/metabolism , Paraquat/pharmacology , Animals , Fibrosis/chemically induced , Fibrosis/genetics , Fibrosis/pathology , Male , Oligonucleotide Array Sequence Analysis , RNA, Messenger/metabolism , Rats , Rats, Wistar
20.
Methods Mol Biol ; 314: 435-56, 2006.
Article in English | MEDLINE | ID: mdl-16673898

ABSTRACT

Analysis of the mechanism of nucleotide excision repair (NER) using cell-free extract systems and purified proteins requires DNA substrates containing chemically defined lesions that are placed at a unique site in a DNA duplex. In this way, NER can be readily specifically measured by detecting the 24-32 nucleotide products of the dual-incision reaction. This chapter describes several methods for detection of repair of a specific lesion in closed-circular DNA. As a model lesion, we use the well-repaired 1,3-intrastrand d(GpTpG)-cisplatin crosslink. Three methods are given for analysis of repair. One is to incorporate a radioactive label internally near the lesion and measure excision by detecting radioactive excised oligomers. Two other methods use DNA that is not internally labeled so that it can be stored and used when convenient. The first method for detection of repair of such unlabeled DNA is to detect excision products with a labeled complementary oligonucleotide by Southern blot hybridization. The second method is to 3'- end-label the excised oligonucleotide directly with radiolabeled dNTP and a DNA polymerase, using a complementary oligonucleotide with a 5'-overhang that serves as a template. This protocol is fast and sensitive, but relies on accurate foreknowledge of the site of 3'-incision for the particular lesion being used.


Subject(s)
Blotting, Southern , DNA Damage , DNA Repair/physiology , DNA, Circular/analysis , Radiochemistry/methods , Cell Extracts/chemistry , Cell-Free System/chemistry , Cisplatin/pharmacology , Cross-Linking Reagents/pharmacology , DNA, Circular/chemistry , DNA, Circular/drug effects , DNA-Directed DNA Polymerase/chemistry , Oligonucleotide Probes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...